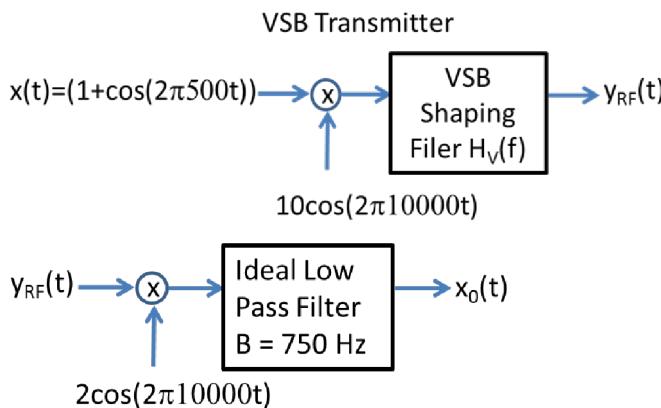
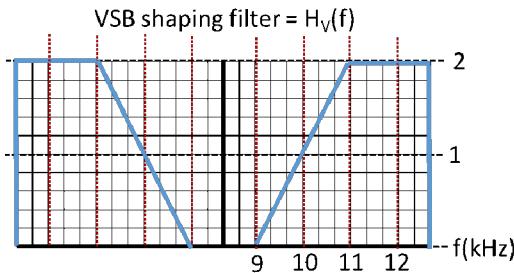


EECS 562
Homework 8

1. Let $x_{bb}(t) = 4\cos(2\pi 400t) + 3\cos(2\pi 450t) + 2.5\cos(2\pi 500t)$

This signal is input to an SSB modulator with $f_c=5000\text{Hz}$ that uses the upper sideband.



- Plot the RF Spectrum of the SSB signal.
- What is the required RF Bandwidth?
- A coherent detector is required to recover $m(t)$ from the RF signal. TRUE or FALSE
- Mathematically show how the message signal is recovered.
- Draw the block diagram for a receiver for this SSB signal.

2. Watch “8VSB, From Transport Stream to RF Signal”

https://www.youtube.com/watch?v=ZlAjfA-hU_8

- What does the 8 refer to in 8VSB?
- How is most of the lower sideband removed?
- 8VSB uses a synchronous receiver, TRUE or FALSE.
- Mathematically explain how shifting the signal by 1.25 V generates the pilot signal.

3. In this problem the information signal is $x_{bb}(t) = 1 + \cos(2\pi 500t)$. Let the input to the VSB shaping filter given below be $10(1 + \cos(2\pi 500t))\cos(2\pi 10000t)$, here $f_c=10\text{kHz}$. Let $y_{RF}(t)$ be signal at the output of the VSB shaping filter as shown below. The VSB receiver is also given below.

- Sketch the spectrum of $y_{RF}(t)$, i.e., the signal at the output of the VSB shaping filter.

- Find the output signal, $x_0(t)$, of the receiver.